library(psych)
genedat <- read.table('index.txt', header = TRUE, sep = '\t')
antidat <- read.table('meta.txt',header = TRUE, sep = '\t')
res <- corr.test(genedat, antidat, use = 'pairwise',
method = 'spearman', adjust = 'holm',
alpha = 0.05)
res$p.adj
res$r
library(pheatmap)
pdat <- res$r
pdat2 <- matrix(ifelse(abs(pdat) <= 0.3, 0, pdat), nrow(pdat))
pdat2 <- matrix(ifelse(res$p.adj >= 0.05, 0, pdat2), nrow(pdat))
colnames(pdat2) <- colnames(pdat)
rownames(pdat2) <- rownames(pdat)
bk <- seq(-1, 1, by = 0.1)
bk
length(bk)
mycol <- c(colorRampPalette(c('blue', 'white'))(9),
colorRampPalette(c('white', 'white'))(3),
colorRampPalette(c('white', 'red'))(9))
pheatmap(pdat2, cellwidth = 15, cellheight = 15,
cluster_cols = FALSE,
color = mycol,
legend_breaks = seq(-1,1,by = 0.2),
breaks = bk)
pdat3 <- data.frame(x = rep(colnames(pdat2), each = 23),
y = rep(rownames(pdat2), 13),
r = as.vector(res$r),
p = as.vector(
ifelse(res$p.adj >= 0.05, 1, res$p.adj)
))
#########1###############
library(ggplot2)
ggplot(pdat3, aes(x,y, colour = r, size = -log10(p))) +
geom_point(aes(alpha = -log10(p))) +
scale_color_gradient2(low = 'blue',
mid = 'grey',
high = 'red',
midpoint = 0) +
scale_size_area() + theme_bw() +
theme(axis.text.x = element_text(angle = 90))
########################
library(readr)
df1<-read_tsv("index.txt")
head(df1)
df2<-read_tsv("meta.txt")
head(df2)
library(psych)
cor.result<-corr.test(df1,df2,method = "pearson")
library(tidyverse)
cor.result$p %>%
as.data.frame() %>%
rownames_to_column() %>%
pivot_longer(!rowname) %>%
mutate(p_value=case_when(
value > 0.05 ~ "A",
value >0.01 & value <= 0.05 ~ "B",
value > 0.001 & value <= 0.01 ~ "D",
value <= 0.001 ~ "E"
)) -> new_df1
ggplot()+
geom_tile(data=new_df1,
aes(x=rowname,y=name,fill=p_value))+
scale_fill_manual(values = c("white","#c0c0c0",
"#808080","#3f3f3f"))+
theme(legend.key = element_rect(colour="black"),
axis.text.x = element_text(angle = 90,hjust=1,vjust=0.5))+
coord_equal()
cor.result$r %>%
as.data.frame() %>%
rownames_to_column() %>%
pivot_longer(!rowname) %>%
mutate(abs_cor=abs(value)) -> new_df2
###########2###############
library(paletteer)
ggplot()+
# geom_tile(data=new_df1,
# aes(x=rowname,y=name,fill=p_value))+
scale_fill_manual(values = c("white","#c0c0c0",
"#808080","#3f3f3f"))+
theme(legend.key = element_rect(colour="black"),
axis.text.x = element_text(angle = 90,hjust=1,vjust=0.5))+
coord_equal()+
geom_point(data=new_df2,
aes(x=rowname,y=name,
size=abs_cor,
color=value))+
scale_color_paletteer_c(palette = "ggthemes::Classic Red-Blue")
###########3###############
ggplot()+
geom_tile(data=new_df1,
aes(x=rowname,y=name,fill=p_value,alpha=p_value))+
scale_fill_manual(values = c("white","#c0c0c0",
"#808080","#3f3f3f"),
label=c(">0.05",
"0.01~0.05",
"0.001~0.01",
"<0.01"))+
scale_alpha_manual(values = c(0,1,1,1))+
guides(alpha=F)+
theme_bw()+
theme(legend.key = element_rect(colour="black"),
axis.text.x = element_text(angle = 90,
hjust=1,
vjust=0.5),)+
coord_equal()+
geom_point(data=new_df2,
aes(x=rowname,y=name,
size=abs_cor,
color=value))+
scale_color_paletteer_c(palette = "ggthemes::Classic Red-Blue")
暂无评论