组间差异检验
来源于:https://www.jianshu.com/p/67be9b3806cd
1. 何时使用非参数检验
或许你还没有理解什么是参数检验、非参数检验,但一定曾在无意之中使用过它们。如我们常用的方差分析、T检验,都属于参数检验。
参数检验,就是假定数据服从某种分布,通过样本信息对总体参数进行检验。因而在分析前,先要检验数据是否符合该类型的分布,如果数据无法满足检验假设的情况不符合分布情况,则可以考虑选择使用非参数检验。
比如,使用方差分析时,需要在分析前对数据的正态性和方差齐性进行判断,如果服从正态性、方差齐性,才可以使用方差分析。反之,如果没有满足这些假设条件,则考虑使用非参数检验。

2. 非参数检验和参数检验的对比
① 适用范围:
非参数检验用作参数检验的替代方法,当数据不满足正态性时,将使用非参数检验。因此,关键是要弄清楚是否具有正态分布。如果数据大致呈现"钟型"分布,则可以使用参数检验。
② 检验效能:
如果数据满足参数分布,应该优先选择参数检验方法。愿因在于参数检验的检验效能要高于非参数检验。尤其是在样本数较大的情况下,参数检验结果较为稳健,所以即使不服从正态分布,也会选择参数检验。
③ 对比指标:
参数检验一般用平均值反映数据的集中趋势;但由于数据不满足正态分布,在非参数检验中如果再使用平均值描述显然不太准确(比如常被吐槽的人均收入),此时中位数是更好的选择。
参数检验用平均值及标准差描述数据分布请况。

非参数检验结果中使用的是中位数描述差异。
④ 图形展示:
除了使用以上指标进行分析,还可以通过图形直观展示数据情况。参数检验常用图形有:折线图、条形图等,非参数检验可以使用箱线图查看。
3. 非参数检验的类型
凡是在分析过程中不涉及总体分布参数的检验方法,都可以称为“非参数检验”。因而,与参数检验一样,非参数检验包括许多方法。以下是最常见的非参数检验及其对应的参数检验对应方法:
单样本Wilcoxon检验
单样本Wilcoxon检验是单样本t检验的代替方法。该检验用于检验数据是否与某数字有明显的区别,如对比调查对象整体态度与满意程度之间的差异。
Mann-Whitney检验
Mann-Whitney检验是独立样本t检验的非参数版本。该检验主要处理包含等级数据的两个独立样本,SPSSAU中称为非参数检验。
Kruskal-Wallis检验
Kruskal-Wallis检验是单因素方差分析的非参数替代方法。Kruskal-Wallis检验用于比较两个以上独立组的等级数据。
在SPSSAU中,与Mann-Whitney检验统称为“非参数检验”,分析时SPSSAU会根据自变量组别数自动选择使用Kruskal-Wallis检验或Mann-Whitney检验。
配对Wilcoxon检验
Wilcoxon符号秩检验是配对样本t检验的非参数对应方法。该检验将两个相关样本与等级数据进行比较。
暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇